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Stability of a stream issuing from a slit-like opening between plane walls under 
the action of small potential perturbations is considered. 

1. Steady flow. We consider a plane problem for a stream of an ideal fluid 
issuing from a slit-like opening in a vessel whose walls are half-planes forming an angle 

of 2 CC, 0 < a < n. A solution of the corresponding stationary problem for an incom- 
pressible fluid is given in e. g. u]. It is defined by mapping the hodograph plane on the 
flow potential plane 

E = ]n[cs(l - c”‘)-r], E = ‘pa + iv”, 5 = 2/s - iUO, p = n,2X (1.1) 
Here g is the complex potential and 5 is the complex velocity. The flow hodograph is 
represented by the sector / 5 1 < 1. 1 arg 5 1 ,( a and the potential region by the 
strip I$, I< n/2. The rays v,, < - 111 2 and 1 q. [ = n/2 correspond to the rigid 
walls in the physical plane z0 = x,, + iy, and the rays ‘p,, > - h 2 and 1 “I),, 1 = 
n/2 correspond to the free surface. 

2. Perturbation equations. Let the flow (1.1) be subjected at the instant 

t = 0 to small perturbations such that the velocity field remains potential, and let the 
potential of the perturbed flow be represented by 

f (2s) 0) = E + Efl b,, 0) + 0 (E*) 

Here E is a small real parameter, while the function fr (z,, 0) is analytic and bounded 

in the region D, of the steady flow. At t = 0 the perturbed flow is potential, there- 

fore at t > 0 the perturbations satisfy the following system of equations: 

Re2LfwY+ $=o, df 
w-= -& (2.4) 

Here f (z, t) denotes the complex potential, w (z, t) is the complex velocity, p is 

pressure, p is the constant density of the fluid and z = z + iy is the complex vari- 
able in the region D, on the physical plane of the flow. 

Since the initial perturbation is small, it is expedient to assume that D, differs little 
from D,. Following [2] we linearize (2.1) using the conformal mapping D,+ D1 

23 = 2 (%, t), z(+m,t)=+~ - (2.2) 

The mapping (2.2) exists, since the regions D, and D, are not too dissimilar, and we 

have z = z, + czl (z,, t), q = z. 0 (1). 
Let us set 

P&t) = Po(Z0) + Wl(ZO, q, tuP,t) = 5(zo) + Et-f4 @o, 0 

f(z, t) = E(G) + E Vl(ZO,O + 5% (20, 91 

605 



606 N.S.Kozin 

Then taking the first order terms in F ,we obtain from (2.2) 

Pl = --pRe $- ( 4- TWl , ) (2.3) 

s (k) = p-1 (1 -+ 4&)-I.2 

The following conditions hold at the free surface: 

p = const, = ($,I (2.4) 

Linearizing (2.4) we find 

(2.5) 

where E belongs to the rays q. > - In 2 and ) Il,,, 1 = n/2. At the rigid walls we 
have 

Im (ru,/j) = 0, Jm (52,) = 0 (2.6) 

Relations (2.6) can be used to show that (2.5) hold at the rigid walls. By virtue of the 
analyticity of 1($ and Z1 in Do and by (2.3), the function ll.l’; is bounded when E -+ ‘GO 
and has integrable singularity at the points E = - In 2 2 in / 2. Assuming that 

5 82, / dt and af,/& are bounded in D,. the assumption corresponding to a smooth 

variation in time of the hydrodynamic functions and of D,, we find that the fact that 
(2.5) holds at the boundary of the strip 1 ?ko 1 < JI / 3 implies that equations 

(2.7) 

hold everywhere in 1 I),, 1 < 2 i :! . The arbitrary functions u (t) and b (i) appearing 
in the right-hand sides of (2.7) can be assumed equal to zero. Indeed, the potential is 
determined with the accuracy of up to the function of time and the mapping D, --+ Dt 
must be normalized. Using (2.3) to eliminate the potential fl from (2.7) with @ (t) = 

b (t) = 0 and setting w2 =Z w,/<‘, we obtain 

(2.8) 

Using (2.7) we can also obtain a formula for computing 11~ in terms of the perturbed 

velocity : p1 = p Re IL w2 (1 - \ i \“)I. 

3. Inltiol valuel. The initial values are specified for the system (2.8) for 
t = 0 in the form ws (E, 0) = Q (E) and z, (t, O)=P(E). The functions p (E) and 
Q (E) are assumed analytic in the strip 1 q. 1 < n / 2. Moreover, they must satisfy the 
conditions at the walls (“the compatibility conditions”), i.e. 

1111 (CP (Q) = Irn (50 (F)) :-= 0, 1 *cl 1 = wf2, VP0 < - 111 2 (3.1) 

We can describe the functions P (E) and Q (E) effectively by considering them in the 
hodograph plane. Then the condition (3.1) will hold on the segments 5 = rp*i2. 
0 < I‘ .< I. Applying in the plane [I = 5:’ the Schwartz symmetry principle and the 
theorem on removable singularity, we obtain 

II = 2 il”<j,; ,,. (p$- +, L 1’ T= 2 PP,; [r ($ +- (:,.a) 
t: ‘-,l /;‘>rL 

/. (‘r) = 1; T-i_,? _ (J-p::, n - [kq.?] -1_ ; 
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l~lere Qi,- and Ph. are real numbers. The choice of the number n is governed by the con- 

dition that I’, -+ 0 as <-+ 0 (E -+ - m), i.e. by the condition that the pressure at 

infinity doesn’t vary. 

Thus the problem of propagation of perturbations has been reduced to solving the Cau- 

thy problem for the system (2. 8) with initial values (3.2) and the problem of stability, 

to that of determining the rate of growth of solutions of (2.8) with time. 

4, The limiting CBBC of a = 0. The case when the fluid flows out of a 

pipe with parallel walls is particularly simple, and the solution of (2.8) and (3.2) can in 
this case be obtained in the explicit form. The stationary flow is given by the formulas 
E ._: ZO? j -= 1, p. = const. ‘Tire perturbation equations are obtained from (2. 8) by 

performing the limiting passage with a-+ 0 

(4.1) 
and the initial conditions 

~~~(& 0) = 2 i”(), [r(E)]“, zI (zO, 0) = 2 ih’ph. (r(g)ji; (4.2) f;>Xl k>l 

follow from (3.2). The solution of (4.1) with initial values (4.2) has the form 

zU2 (30, t) = 2 i”‘Q, Ir( z. - t)]” 
1111 

z~ (20, t) = 2 i” (Ph. - tQc) [r (z. - t)j” 
01 

(4.3) 

From (4.3) it foIlows that the flow is unstabie and the perturbations of the free surface 

increase linearly with t . The solution obtained has a physical sense only for a finite 

period of time. Indeed, when ~2 (z”, 0) -e (I , the upper and lower boundaries of the 

stream will have to intersect at a certain instant of time, and this corresponds to the 

break-up of the stream into separate drops. The formulas (4.3) also show that the Fourier 

method cannot be applied to the problem (4. l), (4.2). Indeed. (4.1). (4.2) have no solu- 

tion of the form elf F, (z,). This fact indicates the absence of natural oscillations in 

the flow and the “drift” character of the propagation of perturbations. 

Before constructing a solution to the problem (2. 8), (3.2). we should make the follow- 

ing remarks: 

1. The system (2. 8) describing the perturbations has multiple characteristics and 

is of the “Jordan cell” type. As we know, the Cauchy problem for such a system is not 

correct in the Hadamard sense. The correctness of the statement of the problem is en- 

sured in this case by the rigorous requirement that the initial values are analytic in the 

region of the flow. 

2. The characteristics of the system (2. 8) are represented by the streamlines of 

the corresponding steady flow. From this point of view the streamlines are trajectories 

along which small potential perturbations are propagated (we know that the vorric‘al 

perturbations arc also translated along the streamlines). 

3. Use of the complex variable makes it possible to reduce the solution of the 

problem, after separating the time-dependence, to integration of a system of ordinary 

differential equations (instead of the partial derivatives usually encountered in tile plane 
problems). 
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4. Since the asymptotics of the solutions of (2. 8) and (4.1) must become identical 
when E - -*3 , we should expect the solutions of (a. 8) to increase at least linearly with 
t . The solution of (2.8) should be sought in the form of an expression, not in terms of 

the elementary wave solutions, but in terms of the elementary solutions with the initial 

values given by 
W2, I, (5, 0) = [I’ ($ +p; (I 

/i--f- 
(4.4) 

ZI (4, 0) = 0; [r([)J !’ ih‘ 

Generally speaking, use of the Fourier method to solve the problem of stability with- 
out analyzing the class of initial perturbations may lead to omissions, and even errors . 
Examples of such omissions are given in [3]. Use of the Fourier method by the autnors of 
[2, 41 led to an erroneous result. The spectrum of purely real eigenvalues points to the 

absence of wave solutions. 

5. Conrtructing the solution, Let us consider the system of ordinary dif- 

ferential equations obtained by applying the Laplace transform to (A. 8) with the initial 

(5.1) 

iu m 
1 

WA = s W.LP-‘.ldt t zi, = s zle -‘.I& 

i--: 5+ iT, ;>lo>O 
To show that a solution of (‘L. 8) with the initial values (3.2) exists, it is sufficient to 

show that a particular solution of (5.1) exists, for which the estimate 

1 LO). 1 = 0 (1 h I-‘), ! Z). ( == 0 (I A I-‘) (5.2) 

holds in the strip ( $0 1 < n/2 for sufficiently large 1 h I. Then the formulas express- 

ing the solution of the problem (2. 8), (3.2) have the form 

(5.3) 

To simplify the process of constructing the solution, let us consider the case of the 
initial values p (t) = (I and 0 (6) =#= 0. The case of /’ (5) -#= 0 and (1 (t) = () 
is treated in an identical manner. It should be noted that if the estimate I W ( < 

and the estimate I z;. 1 < cons;L j ?. 1 --1 follows. Setting 
to the variable k, = [:j and to the unknown functions w 

P :=_$,and passine in (5,l) 
% == $, u:). and Z, % =- c:i,i~h 

we obtain 
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The system (5.4) has an essential singularity at 5, = 0. Following [S] (p. 198) we can 
show that (5.4) has a unique solution analytic within the circle 1 51 1 < 1. Its Taylor 

expansion has the form 

(5.5) 

The coefficients nh. (A) and b,i (h) are found from the following recurrent relations: 

1’,, (n + hco - l/3) rnrO 
a,, = An (V ’ bn = - A,,(h) 

k-n k --,I 

b,; = - A/;-l [cork i_ k 7 CjUk_j + ( -t h k ho) 2 cjbk-j 1 , k > II 

j=l 

Ak (h) = (k + 2°C0) (k + hC” - lip;=;- hc,!P 

where Cj and rj are the coefficients of the Taylor expansions for the functions c (5,) 

and R (cd. It can be shown that A,i (h) # 0 f or 5 > 0. Therefore the series (5.5) 

represents a function analytic for 1 G1 1 < 1 and 5 > 0. Knowing (5.5),we can obtain 
the asymptotic expression for the function W> with i -+ 00 . Let us denote 

Ah- = lim Auk, BI, = limhbh. 
?.-Nv A-=m 

The recurrent formulas yield k-72 

A,, = r,,cg-’ ; Ah_ = C"-' (Tk - 2 CjAh_-j), k> ?Z 

j=l 

B,=O, k>n 

from which it follows that the series 7 A&,ih’ converges and its sum is equal to 

K (51) c-l (L)’ ii>,!1 

Thus we have the following asymptotic formula for h-t co : 

From (5.6) follow (5.2) and (5.3). as well as an expansion in terms of the elementary 
solutions with the initial values (4.4). 

Since the functions whand zh, are analytic when u > 0, the number a in the expres- 
sion (5.3) can be chosen to be positive and arbitrarily small, i.e. the straight line along 

which the integration is performed can be brought as near as we like to the vertical axis. 
The perturbations on the free surface of the stream grow linearly in t , therefore the lat- 
ter is unstable. 

The experimentally arrived at fact of stability can be explained by considering the 

“drift” character of the perturbations. Let us consider, for simplicity, the case u = 0. 
We note that the growth of the perturbations takes place at the “Lagrangian” point z,,= 
t. At the same time, the perturbations at the “Eulerian” point zO = const tend to zero: 
z1 2 le -t and we - cmi. We can therefore assert that the stream is stable at a finite 
distance from the slit. 
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The laminar boundary layer is studied for a binary mixture in the case when 
large blowing takes place from the streamlined surface. Velocity, concentra- 
tion and temperature distributions within the boundary layer are obtained, for- 

mulas for computing the distance to the “line of spreading” are given and ex- 

pressions for the velocity, concentration and temperature gradients at the sur- 

face of the body related to the magnitude of the blowing, are derived. 
It was shown earlier n] that the concentration and temperature gradients at 

the separation point on the body decrease exponentially with increasing blow- 
ing ; the author of @] obtained the power dependence on the blowing every- 
where, except at the separation point. The present paper gives expressions 

containing both these results and an estimate of the region of validity for each 
of them. 

1. The laminar boundary layer equations for a binary mixture have the form [3] 


